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Host-virus associations have co-evolved under ecological and evolutionary selection pres-

sures that shape cross-species transmission and spillover to humans. Observed virus-host

associations provide relevant context for newly discovered wildlife viruses to assess

knowledge gaps in host-range and estimate pathways for potential human infection. Using

models to predict virus-host networks, we predicted the likelihood of humans as hosts for 513

newly discovered viruses detected by large-scale wildlife surveillance at high-risk animal-

human interfaces in Africa, Asia, and Latin America. Predictions indicated that novel cor-

onaviruses are likely to infect a greater number of host species than viruses from other

families. Our models further characterize novel viruses through prioritization scores and

directly inform surveillance targets to identify host ranges for newly discovered viruses.
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Identifying zoonotic virus emergence events at the earliest
possible stage is key to mitigating outbreaks and preventing
future epidemic and pandemic threats. By the time novel

viruses are recognized in humans, often as a cluster of unusual
cases, public health interventions to prevent or contain an epi-
demic face major challenges. However, determining the potential
zoonotic transmission for newly discovered animal viruses, in the
absence of documented human infection, is currently a major
scientific challenge. New approaches are needed to evaluate and
characterize the risk of zoonotic transmission of newly discovered
animal viruses in the face of very limited data. Here we analyze
human, domesticated animal, and wildlife surveillance and viral
discovery data collected from 2009 to 2019, as part of a
consortium-led One Health project aimed at strengthening pan-
demic threat detection capabilities in Africa, Asia, and Latin
America1. Surveillance efforts resulted in 944 novel monophyletic
clusters of virus sequences in wildlife (referred to as novel viruses
henceforth) from 18 virus families sampled at high-risk animal-
human disease transmission interfaces in 34 countries. As none of
these viruses have yet been identified in humans, other indices
were previously established to assess potential risk, such
as virus host range or plasticity, and expert opinion based
on integration of ecological and molecular characteristics of
viruses2–5. We were able to quantify the risk of zoonotic trans-
mission for 531 out of 944 novel animal viruses using data dri-
ven models to predict host-virus networks.

Patterns observed across host-virus networks have been used to
understand virus sharing among vertebrate species2,6,7, and pre-
dict cryptic links between mammalian, and avian hosts and their
viruses8–10. Host-virus network linkages can be informed by virus
traits, virus biogeography, host ecological niches, and propensity
for host sharing among viruses10,11. Precedence in viral sharing
among species and ecological opportunities for spillover, as
characterized by network topology, can inform propensities for
newly discovered viruses that lack data5. Further exploration of
these networks can aid in estimating the host plasticity of viruses,
an important characteristic associated with zoonotic potential2,5.
Unfortunately, systematically collected surveillance data to para-
meterize and validate these models have been missing3. Here, we
apply a network approach to gain ecological insights from viruses
that have been shared among species in nature and inform
potential virus-host associations and zoonotic risk of novel
viruses recently discovered from wildlife.

Using data from the literature, we developed a network that
included 269 known zoonotic and 307 non-zoonotic viruses

infecting 885 avian and mammalian hosts (Gc; Fig. 1, Fig. S1).
The network was used to train and validate two gradient boosting
decision tree models to predict links and taxonomic orders of
missing links generated by host sharing12. Trained models were
used to predict possible host links for 531 novel viruses due to
commonalities in host sharing with known viruses and generated
a predicted host-virus network (Gpredicted , Fig. 1) formed due to
the inclusion of novel viruses and their predicted linkages. We
also predicted the taxonomic order of probable hosts shared as a
link between two virus nodes of the network and the likelihood of
the link to be humans, indicative of viruses’ predicted potential to
be zoonotic.

Results and discussion
Virus-host network for known viruses (Gc). We developed a
unipartite network with viruses as nodes and host species as edges
for all species recognized as a host for viruses based on data
presented in previous studies and databases, specifically, data
shared by Olival et al.,4 Pandit et al.,3 and Johnson et al.13 and
GenBank. In the observed network (Gc), viruses were represented
as nodes and a link (edge) was generated if two viruses had been
detected in the same host species. The observed network (Gc)
included 576 viruses as nodes and 35,838 edges (viruses linked
because of shared hosts) representing 352 vertebrate species
(Fig. 1). Exploration of network characteristics of known viruses
revealed differences in host sharing among virus families. The
distributions of centrality measures (Fig. 2a, b, e, i) for Filoviridae,
Flaviviridae, Hantaviridae, and Orthomyxoviridae families were
statistically different from the mean (Kolmogorov-Smirnov,
p < 0.05). Furthermore, after accounting for sampling bias for
individual viruses using PubMed hits (number of search results
associated with virus using a specific search term), we ran a linear
regression model with node-level permutations (10,000 permu-
tations to further characterize the distribution of viruses within
virus families in the network). Viruses in families Hantaviridae,
Filoviridae, Flaviviridae, and Orthomyxoviridae had a sig-
nificantly higher degree (p < 0.05) and eigenvector centrality
(p < 0.05), indicating more connections in the host-virus network
than other represented virus families. Viruses from the Flavivir-
idae family also had higher betweenness centrality (p= 0.01)
indicating more connections based on shared host species
(Figs. S2–S5). Results based on distributions of centrality mea-
sures, as well as node level regression models, show similar
directionality for Hantaviridae, Filoviridae, Flaviviridae, and

Fig. 1 Modeling workflow. The figure shows the modeling procedure and methods implemented in the study. Orange dots represent a known virus in the
observed (Gc) and predicted networks (Gpredicted), blue dots represent novel viruses in the predicted network (Gpredicted). Virus-host networks: Gc, represents
a unipartite observed network of known zoonotic and non-zoonotic viruses with nodes representing viruses and edges representing shared hosts.
Gpredictedrepresents the predicted unipartite network generated after predicting possible linkages between 531 novel viruses (blue) and known viruses. The
node size is proportional to the betweenness centrality.
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Orthomyxoviridae families across multiple network topological
metrics. Our findings provide further evidence for direct rela-
tionship between higher host plasticity and greater zoonotic
potential2,4.

The wildlife surveillance data consisted of tests for 99,375
animals, representing specimens from 861 species, mostly bats,
rodents, primates, and other mammals (https://zenodo.org/
record/5899054)1. To predict associations (linkages) between
novel viruses with other viruses formed due to common host
species, gradient boosting models were trained using network
topological characteristics and families of viruses in the virus
pairs to estimate: (1) whether virus pairs have a species host in
common; and (2) the taxonomical order of shared hosts (Fig. 1).

Characteristics of predicted network (Gpredicted) and newly
discovered viruses. The binary model performed well in pre-
dicting the presence of links formed due to sharing of hosts
between two virus nodes in the network (mean positive predictive
value= 0.99, sensitivity= 0.96, F-score 0.97, Fig. S6). The dis-
tribution of predicted probability for all links using the binary
model showed clear bimodal distribution (Fig. S7a). The accuracy
scores as a function of precision and recall indicated good model
performance beyond 0.15 predicted probability for the binary
model (Fig. S8). Hence, as a more conservative approach and to
give more weight to the precision, we decided to use 0.7 as an
optimum threshold for detecting a positive link between two
nodes (viruses). The performance of the multilabel model varied
for taxonomical orders, with a high to moderate performance for
predicting taxonomical group and order of ‘humans’ and Cetar-
tiodactyla (Figs. S7, S9). For 531 novel viruses, we identified
184,055 possible links to other viruses formed due to sharing of
hosts (based on the optimum probability threshold of 0.7

identified for the binary model) generating the predicted network
(Gpredicted , Fig. 1, Fig. S7a). For these predicted links, between two
viruses, the multiclass model was able to estimate the potential
taxonomic order of the shared species for 175,113 links. For the
remaining links, the model was not able to confidently predict a
specific taxonomic order. Jaccard coefficient consistently showed
high importance with all three importance metrics tested (gain,
cover, and weight), indicating predictive ability in identifying
missing links between unipartite viruses formed due to sharing of
hosts (Fig. S10). Although, we suspect that these neighborhood-
based topological features will be more predictive in a bipartite
network setting due to more information flow between nodes.

Empirical biological networks are rarely scale-free (network
with large hubs and showing a power-law distribution for
degree)14 but a recently published study with host-host projected
networks where links are represented by sharing of pathogens
between hosts, has shown scale-free nature where models with
power-law distributions showed the best fit for host-parasite
networks15. Similarly, both observed (Gc) and predicted
(Gpredicted) networks provided evidence that some viruses shared
significantly larger numbers of hosts, creating hubs of preferential
attachment and showed weak evidence of scale-free nature
(loglikelihood ratio test p > 0.05). The degree (Fig. 2a, e, f) and
betweenness centrality (Fig. 2b, i, j) distributions for predicted
network (Gpredicted) showed longer tails (Kolmogorov-Smirnov,
p < 0.05) than the observed network (Gc) both at network and
virus family level. Mean network degree for all virus families
reduced significantly with the addition of newly discovered
viruses that were predicted to have fewer links than known
viruses, indicating lower host plasticity for novel viruses than
known viruses or insufficient adjustment of reporting bias
(Fig. S11).

Fig. 2 Predicting missing links between virus-host communities. Distribution shapes of degree (a) and betweenness centrality (b) for the observed and
predicted network. Degree distributions for virus families in observed and predicted networks are shown in e and f. Similarly, shapes of betweenness
centrality for virus families in observed and predicted networks are shown in i and j. Right panels show boxplots for novel virus families describing degree
(c), betweenness centrality (d), eigenvector centrality (g), and clustering based on the predicted network formed by the binary prediction model (h).
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Based on a linear regression model with node-level permuta-
tions (10,000 permutations), our adjustment for search effort
(PubMed hits) was found to have no effect on the degree
(p= 0.39, Fig. S12) and betweenness centrality (p= 0.22,
Fig. S13), but did significantly affect the eigenvector (p < 0.05,
Fig. S14) and clustering coefficient (p < 0.05, Fig. S15) of novel
viruses. These results indicate that sampling and reporting efforts
affect our understanding of the predilection towards certain
species as illustrated by clustering in the network, but do not
affect the prediction of missing host links quantified by degree
centrality within the network. Many of the newly discovered
viruses were mostly detected in only one species (mean= 1.32,
SD ± 0.99, n= 944). Long tails of centrality distributions
generated for the predicted network (Gpredicted) and comparatively
lower centrality measures for novel viruses, when compared with
known viruses, support a tendency for newly discovered viruses
to be more host-specific than previously recognized viruses, a
pattern that should be further evaluated with additional sampling
effort to identify the full host range for novel viruses.

Importantly, a comparison between virus families of novel
viruses showed that novel coronaviruses had a higher degree
(p < 0.001, Fig. 2c, Fig. S12), betweenness (p= 0.02, Fig. 2d,
Fig. S13), and eigenvector (p < 0.001, Fig. S14) centralities in the
predicted network compared to newly discovered viruses in all

other virus families (Fig. 2c, d, g). In addition, the raw detection
data showed significantly higher host diversity for novel
coronaviruses with a mean of 2.02 (SD ± 2.03, n= 114) unique
host species (maximum of 15 species) compared to 1.22
(SD ± 0.70, n= 834) for other novel viruses detected in this
study. This finding raises concern about the ability of novel
coronaviruses to infect a greater number of species than viruses
from other families. The recently emerged SARS-CoV-2 and the
previously emerged SARS-CoV-1, have shown a wide host
breadth16. These predictions for novel coronaviruses highlight
their key ecological properties that can influence spillover into
humans. Following coronaviruses, novel flaviviruses showed
significantly higher betweenness centrality (p < 0.001). Host
taxonomic order for novel viruses had no significant association
with the degree centrality of the virus in the predicted network.
Predicted network characteristics not only differentiate virus
families based on network characteristics but also predict network
characteristics that are key in understanding the ecology of a
novel virus and its behavior within the network community of
hosts, including the expected breadth of host species most likely
to be infected by that novel virus.

Prioritizing novel viruses for further characterization. For the
531 novel viruses, we developed prioritization metrics that inform

Fig. 3 Prioritization metrics for novel viruses to understand zoonotic risk. Top ten and bottom five newly discovered viruses from six virus families (a–d)
with the virus prioritization scores based on multiclass model predictions. Annotations show the score and support represented by the number of human
links predicted.
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on the ecological and evolutionary tendencies for spillover based
on number of human links with known viruses predicted by
the multiclass model. Novel viruses from Herpesviridae, Rhab-
doviridae, Coronaviridae, Adenoviridae, Astroviridae, and Para-
myxoviridae families not only showed a high median probability
of sharing human links with known viruses (Fig. S16) but also
were predicted to have large numbers of human links in the
predicted network (Gpredicted). Novel viruses of the Picobirnavir-
idae and Rhabdoviridae families detected here have been specu-
lated to be hyper-parasites infecting bacteria and insects and were
identified in mammalian host samples. Hence the predicted
associations for these virus families should not be inferred as
infection but only as detection in host samples (e.g., potentially
insect viruses detected in oral swab samples from bats). Based
on generalized linear mixed models, search effort (PubMed hits)
was not associated with the predicted number of human links
(p= 0.24, Table S1) nor the mean probability of sharing human
links for novel viruses (p= 0.778, Table S2).

For a relative comparison of zoonotic risk for novel viruses, a
prioritization score was developed based on the predicted
probability of links being human and the number of shared
human links in the predicted network for a given virus. To
understand the performance of the prioritization score, we
compared scores for known zoonotic and non-zoonotic viruses
generated by the ensemble of both binary and multi-class
models. Results indicated significantly higher prioritization
scores for known zoonotic viruses (Fig. S17, p < 0.001) compared
to known non-zoonotic viruses. Prioritization scores were
derived essentially from the prediction of new/yet unobserved
network links generated by the virus with another virus formed
due to sharing of hosts. However, models were unable to predict
new links for well-recognized viruses that have numerous hosts,
such as Rabies virus and West Nile virus, and consequently
resulted in a prioritization score of zero. Figure 3a–d shows the
top ten and bottom five novel viruses from four virus families
for relative comparison based on the prioritization score

(Figs. S18–S24). PREDICT_CoV-15 found in two Phyllostomi-
dae bats from South America (Artibeus lituratus, Sturnira
lilium) scored the highest prioritization score in all novel
viruses. Other top ten novel coronaviruses based on the
prioritization score included viruses detected in Phyllostomidae
bats (PREDICT_CoV-4, PREDICT_CoV-13, PREDICT_CoV-
11, PREDICT_CoV-5). Out of these, PREDICT_CoV-11 was
also detected in Mormoopidae species (Pteronotus personatus)
and PREDICT_CoV-5 was found in Vespertilionidae species
(Bauerus dubiaquercus) during the surveillance. These also
included coronaviruses detected in Southeast Asian Pteropodi-
dae bat species such as PREDICT_CoV-16 and PREDICT_CoV-
22. PREDICT_CoV-22 was also detected in Hipposideridae bat
species (Hipposideros lekaguli). PREDICT_CoV-78 detected in
multiple bat and rodent species of Southeast Asia also showed a
high prioritization score. These model outcomes, especially the
prioritization score, provide a data-driven tool to quantify
zoonotic risk for novel viruses. Even though the model is trained
on numerous data points for known zoonotic and non-zoonotic
viruses, individual predictions for newly discovered viruses
would only require data on hosts and virus family if used within
our modeling framework.

Prioritizing future surveillance. The sharing of viruses among
hosts is driven by geographical overlap and synergies in ecological
niches of hosts, as well as virus-specific characteristics that enable
cross-species transmission10. Novel viruses discovered in rodents,
bats, primates, and other mammalian hosts were sampled from
sites in close association with people, or at high-risk interfaces
that can facilitate disease transmission in urban and rural
settings1,13. Additional surveillance across a broader taxonomic
range is essential to gain insights on newly detected viruses,
further inform spillover risk, and improve model predictions
presented here. We used our network model and host taxonomic
data in which the novel virus is first detected to prioritize host
species (surveillance targets) for further surveillance of newly

a) b)

Fig. 4 Surveillance targets for novel coronaviruses based on predicted sharing of hosts with known viruses. The red color represents the evidence of
species in the taxonomic family (cumulative probability) with darker red color indicating a higher number of species occurrences from taxonomical families
adjusted by model predicted probability. a shows clustering of novel coronaviruses by the host, and b focuses on novel coronaviruses found in bats.
Clustering is based on the Bray-Curtis dissimilarity index.
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discovered viruses (Supplementary Data 1). Moreover, given the
recent SARS-CoV-2 pandemic we further explored surveillance
targets for novel coronaviruses. Novel coronaviruses were detec-
ted in bats, rodents, birds, and primates (Fig. 4a). For novel
coronaviruses, that were detected in bats, predicted surveillance
targets for bat coronaviruses showed three distinct clusters
(Fig. 4b). The first cluster of novel coronaviruses in bats had a
higher proportion of predicted species from the Miniopteridae
family (Bent-winged bats) but none from Natalidae (Neotropical
funnel-eared bats). Another prominent cluster prioritized all 11
chiropteran families, while the third cluster of coronaviruses
showed relatively fewer host recommendations from Mini-
opteridae bats. Representation of these surveillance targets
through these clusters highlights host predilection of novel cor-
onaviruses and indicates their preferential sharing of hosts. These
clusters also support earlier results related to the scale-free nature
of the predicted network (Gpredicted) by creating virus hubs in the
virus-host network. Cluster maps for other virus families pro-
viding evidence for future surveillance are shown in Figs. S25–S31
and Supplementary Data 2.

Grange et al. developed a tool that ranks viruses for an animal to
human spillover using a risk-based approach validated by inputs
from various experts from the field of virology, epidemiology, and
ecology5. Our approach, on the other hand, quantifies the risk of
spillover agnostically and informs the predicted host range solely
based on existing data available across the breadth of viruses and
natural infections observed in free-ranging mammalian and avian
hosts. Although numerous studies have been recently published that
predict host-pathogen predilections, our framework quantifies the
risk for viruses that have been recently discovered in animal hosts.
Network models have shown to perform well with the inclusion of
ecological trait data10,17 and genome sequences18, but, with the
limited data available for novel viruses, the approach provided here
is an important step towards characterizing zoonotic potential for
newly discovered animal viruses in the face of sparse data. These
results may imply that network models are better at identifying a
predictive signal when they are virus-centric (viruses as nodes and
shared hosts as edges), particularly given previous host-centric work
has produced mixed results when using trait-agnostic network
modelling approaches17. Our network approach presents some
limitations specifically for viruses that have been detected in species
with limited surveillance efforts to date and are thus not part of the
training data. For this reason, we were able to generate predictions
for only 531 novel viruses out of 944. The remaining 413 novel
viruses without predictions were detected in species that were never
found positive for any virus, starkly indicating the lack of
surveillance in wildlife. Further, model findings should be
interpreted as associations between hosts and viruses based on
the detection of viruses in samples collected from host species.
These associations require further understanding around the role of
hosts in the transmission ecology of viruses, especially to elaborate if
hosts can serve as reservoir, amplifying, or dead-end hosts.
Detection of a virus in a host species is not always correlated with
that host’s ability to produce viremia for further transmission.
Similarly, some of the novel viruses from Picobirnaviridae and
Rhabdoviridae have been speculated to be hyperparasites and the
interpretation of these detections and predicted host-associations
need further investigations.

Conclusions
Novel viruses with high scores on the prioritization metrics
present a strong eco-evolutionary case for further genetic and in-
vivo characterization to understand the risk of spillover. The
scoring will help streamline in-depth in-vivo characterization and
develop additional hypotheses related to genetic and ecological

mechanisms for cross-species transmission and zoonotic spil-
lover. Nucleotide data associated with novel viruses presented
here are short, hence the current model framework of using only
host associations provides a key advantage. However, network
models have shown to improve prediction capacities when
nucleotide data are included as features for prediction11. These
tools will improve with further surveillance and discovery of new
viruses and their hosts19, ultimately informing our understanding
of the mechanisms of zoonotic emergence for viruses from
wildlife.

Methods
Data collection. Virus-host data was collated from various sources. Major sources
for the association databases included data shared by Olival et al4., Pandit et al.3,
and Johnson et al.13. In data provided by Olival et al (assessed September 2019),
host-virus associations have been assigned a score, based on detection methods and
tests that are specific and more reliable. We used associations that have been
identified as the most reliable (stringent data) from Olival et al4. In addition, a
query in GenBank was run to parse out hosts reported for each GenBank sub-
mission for viruses presented in each of these three databases. Initially, for each
virus name, taxonomic ID was identified using entrez.esearch function in biopy-
thon package. The taxonomic ID helped linked to the GenBank databases, identify
the ICTV lineage and associated data in PubMed20,21. NCBI TaxID closely follows
the ICTV database, but some recent changes in ICTV might not always be reflected
in NCBI, so we manually checked names to ensure matching. This included virus
genus and family information along with a standard virus name. Host data were
aggregated based on the taxonomic ID and associated standard name. Finally, for
each virus, a search was completed in PubMed to compile the number of hits
related to the virus and their vertebrate hosts using the search terms below. The
number of PubMed hits (PMH1) were used as a proxy for sampling bias3,13. The
virus-host association data source is presented in supplementary code and data files
(https://zenodo.org/record/5899054).

searchterm ¼ ðþvirus nameþ ½Title=Abstract�Þ
AND host OR hosts OR reservoir OR reservoirs ORð
wild ORwildlife OR domestic OR animal OR animals OR

mammal OR bird OR birds OR aves OR avianOR avians

OR vertebrate OR vertebrates OR surveillance OR sylvatic
�

Along with the PubMed terms we also queried the nucleotide database on
PubMed using the taxonomic ID to find the number of GenBank entries for these
viruses (PMH2). A correlation analysis between the PMH1 and PMH2 of well-
recognized known viruses showed a high correlation with each other for us to
safely use GenBank hits for novel viruses during the prediction stage of the model
(Fig. S32).

Development of Gc . a. Centrality measures of observed network (Gc)
To test if centrality measures (degree centrality, betweenness centrality,

eigenvector centrality, clustering coefficient) for viral nodes in the observed
network (Gc) vary significantly between viral families, we firstly used the
Kolmogorov-Smirnov (KS) test. KS test is routinely used to identify distances
between cumulative distribution functions of two probability distributions and is
largely used to compare degree distributions of networks22,23. For each viral family,
distributions of centrality measures (degree centrality, betweenness centrality, and
eigenvector centrality) and clustering coefficient within the observed network (Gc)
were compared with the distribution of all nodes in the network using the two-
tailed KS test. Secondly, a linear regression model with virus family as a categorical
variable and the number of PubMed hits as a covariate to adjust for sampling bias
were fitted to understand associations of viral families with centrality measures.

centrality measure ¼ β0intercept þ β1Viralfamilycategorical þ β2PubMed hits

After fitting the model, node-level permutations were implemented. For each
random permutation, the output variable was randomly assigned to covariate
values and the model was re-fitted. Finally, a p-value was calculated by comparing
the distribution of coefficients from permutations with the original model
coefficient.

Network topology feature selection. Using the observed network (Gc), multiple
network topological features for all node (virus) pairs were calculated. The fol-
lowing are topological network features calculated. Features data type, definition
and methods to calculate these features are presented in Table S3.

1. The Jaccard coefficient: a commonly used similarity metric between nodes in
information retrieval, is also called an intersection of over the union for two nodes
in the network. In the unipartite network generated here, it represents the
proportion of common neighbor viruses from the union of neighbor viruses for
two nodes. Neighbor viruses are defined as viruses with which the virus shares at
least a single host.
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2. Adamic/Adar (Frequency-Weighted Common Neighbors): Is the sum of
inverse logarithmic degree centrality of the neighbors shared by two nodes in the
network24. The concept of Adamic Adar index is a weighted common neighbors
for viruses in the network. Within network prediction, the index assumes that
viruses with large neighborhoods have a less significant impact while predicting a
connection between two viruses compared with smaller neighborhoods.

Both Jaccard and Adamic Adar coefficients have been routinely used for
generalized network prediction and have shown high accuracy in predicting
missing links in networks, specifically bipartite networks25, the information flowing
through neighborhoods formed by two nodes might not always be enough to have
similar predictive power in an unipartite network. This warrants use of other
topology features along with neighborhood-based features.

3. Resource allocation: Similarity score of two nodes defined by the weights of
common neighbors of two nodes. Resource allocation is another measure to
quantify the closeness of two nodes in the network and hence to understand the
similarity of hosts they infect.

4. Preferential attachment coefficients: The mechanism of preferential
attachment can be used to generate evolving scale-free networks, where the
probability that a new link is connected to node x is proportional to k26.

5. Betweenness centrality: For a node in the network betweenness centrality is
the sum of the fraction of all-pairs shortest paths that pass through it. The feature
that we used for training the supervised learning model was the absolute difference
between of betweenness centralities of two nodes. The difference between the
betweenness centrality represents the difference in the sharing observed by two
viruses in the pair.

6. Degree centrality: The degree centrality for a node v is the fraction of nodes it
is connected to. The feature that we used for training the supervised learning model
was the absolute difference between degree centralities of two nodes. Unlike the
difference in the betweenness centrality, the difference in degree centrality only
looks at the difference in the number of observed host sharing.

7. Network clustering: All nodes were classified into community clusters using
Louvain methods27. A binary feature variable was generated to describe if both the
nodes in the pair were part of the same cluster or not. If both viruses are from the
same cluster, it represents a similar host predilection than when both viruses are
not from the same cluster hence accounting for the evolutionary predilection of
viruses (or virus families) to infect a certain type of host.

These topological network characteristics come with certain limitations when
it comes to the unipartite network of viruses with links formed due to shared hosts
and might not truly represent the flow of information between nodes as compared
to a bipartite network. Therefore, to account for these limitations, we use multiple
network features as weak learners in our model building characteristics summarizing
the network through the use of several quantitative metrics. In addition to this, we
estimated the feature importance of these metrics in predicting missing links between
viruses to quantify the information pasting through these links.

Pearson’s correlation coefficients were calculated to identify highly correlated
features and for choosing features for model training (Fig. S33). Virological features
included in model training were categorical variables describing the virus family of
both the nodes in the pair, followed by a binary variable if both the viruses belong
to the same virus family. During the model development, PubMed hits generated
three predictive features for each pair of viruses on which model training and
predictions were conducted. These included two features representing PubMed hits
for the two viruses in the pair (PubMedV1, PubMedV2) and the absolute difference
between PubMedV1 and PubMedV2 to account for differences in sampling bias
between the two viruses.

Cross-validation and fitting generalized boosting machine (GBMs) models. A
nested-cross-validation was implemented for the binary model while simple cross-
validation was implemented for the multiclass model (multiple output categories).
The parameters of the binary model were first hyper-tuned using a cross-validated
grid-search method. Values were tested using a grid search to find the best-
performing model parameters that showed the highest sensitivity (recall). The
parameters tested for hypertuning and their performance are provided in the
supplementary material (supplementary results and Table S5). For further cross-
validation of the overall binary model, all the viruses were randomly assigned to
five groups. For each fold, the viruses assigned to a group were dropped from the
data, and a temporary training network (Gt Þ was constructed, assuming that this
represented the current observed status of the virus-host community. For all
possible pairs in Gt (both that sharing and not sharing any hosts) ten topological
and viral characteristics were calculated as training features (Table S4). Categorical
features were one-hot-encoded and numeric features were scaled. An XGBClassi-
fier model with binary: logistic family was trained using the feature dataset to
predict if virus pairs share hosts (1,0 encoded output). The cross-validation was
also used to determine the optimum decision threshold for determining binary
classification (Fig. S6) and a precision-recall curve was used to identify positive
predictive value and sensitivity at the optimum threshold (Fig. S8).

The multiclass model was implemented in the same way, creating an observed
network (Gc) based on species-level sharing of hosts and randomly dropping
viruses to generate a training network (Gt) to train the XGboost model. The output
variables were generated based on the taxonomical orders of shared hosts. A pair of

viruses can share multiple hosts, hence we trained a multioutput-multiclass model.
Humans were considered an independent category of taxonomical order (label)
and were given a separate label from primates. For fine-tuning the multiclass
model, we started with the best performing parameters of the binary model and
manually tested 5 combinations of model parameters by adjusting values of the
learning rate, number of estimators, maximum depth, and minimum child weight
(Supplementary code and results).

We used three methods to estimate the importance of features for our binary
model. Specifically, improvement in accuracy brought by branching based on the
feature (gain), the percentage of times the feature appears in the XGboost tree
model (weight), and the relative number of observations related to the specific
feature (cover). Results for feature importance are shown in supplementary results
(Fig. S10).

Missing links for novel viruses, binary and multiclass prediction. The wildlife
surveillance data represented a sampling of 99,379 animals (94,723 wildlife, 4656
domesticated animals) conducted in 34 countries around the world between
2009–2019 (Table S6)1. Specimens were tested using conventional Rt-PCR,
Quantitative PCR, Sanger sequencing, and Next Generation Sequencing protocols
to detect viruses from 28 virus families or taxonomic groups (Table S7). Testing
resulted in 951 novel monophyletic clusters of virus sequences (referred to as novel
viruses henceforth). Within 951 novel viruses, 944 novel viruses had vertebrate
hosts that were identified with certainty based on barcoding methods and field
identification. Host species identification was confirmed by cytochrome b (cytb)
DNA barcoding using DNA extracted from the samples28. We predicted the shared
host links between novel viruses and known viruses using binary and multiclass
models in the following steps. Out of 944 novel viruses discovered in the last ten
years, we were able to generate predictions for 531 novel viruses that were detected
in species already classified as hosts within the network. The remaining 413 viruses
were the first detection of any virus in that species and thus host associations could
not be informed by the observed network (GC) data.

1. A new node representing the novel virus was inserted in the observed
network (Gc). Using the list of species in which the novel virus was detected, new
edges were created with known viruses that are also known to be found in those
hosts. This generated a temporary network for the novel virus (Gtemp). If the novel
virus was not able to generate any edges with known viruses, meaning the host in
which they have been found was never found positive for any known virus,
predictions were not performed.

2. Using Gtemp feature values were calculated for the novel virus (betweenness
centrality, clustering, and degree). For all possible pairs of the novel virus with
known viruses that are not yet connected with each other through an edge in Gtemp

a feature dataset was generated (Jaccard coefficient(novel virus, known virus), the
difference in betweenness centrality of the novel virus and known virus, if the novel
virus and known virus were in the same cluster, the difference in degree
centrality(novel virus, known virus), if the novel virus and known virus were from same
virus family, the difference in PubMed hits(novel virus, known virus), PubMed hits for
the novel virus, PubMed hits for the known virus). Studies and nucleotide
sequences for novel viruses are expected to be published and shared on PubMed’s
Nucleotide database and in various peer-reviewed publications. Data associated
with GenBank accession numbers and nucleotide sequences for novel viruses are
presented in Supplementary Data 3 and Supplementary Data 4 respectively. At the
time of development of the model, data for all viruses was not shared in a format
that would reflect on PubMed’s database, we decided to use the number of unique
species the virus was detected in the last ten years of wildlife surveillance conducted
by the USAID PREDICT project. These detections will be reflected in PubMed’s
Nucleotide database and search term eventually, hence we considered them as a
proxy for search terms conducted for known viruses. Currently, evaluation of the
effects of this substitution of PubMed hits with the number of detections for novel
viruses is not possible with limited data on novel viruses but needs to be
reevaluated as more studies are published on these novel viruses. To further
evaluate the association between PubMed hits through search term and Genbank
hits, we ran a generalized linear regression model with PubMed hits as dependent
variable and Genbank hits as intendent variable, accounting for virus families.

PubMedSearch log
� � ¼ β0intercept þ β1Virusfamilycategorical þ β2Genbank hits ðlogÞ

The results indicated that Genbank hits had statistically significant predictive
value in predicting PubMed hits (β= 0.72, p < 0.005) even after accounting for
various virus families. Multiple virus families showed statistically different
estimates than the reference virus family (Adenoviridae) indicating a significantly
different association than other virus families. Results of the generalized linear
regression model are presented in Table S8.

3. Using this dataset for the novel virus, a binary presence of a link between the
novel virus and known viruses was predicted using the trained binary model. The
taxonomic order of the host link was predicted using the trained multiclass model.

4. For each possible link, the binary model predicted the probability of sharing a
link, and the multiclass model predicted multivariate outcomes of taxonomic
orders and associated probabilities. A threshold of 0.70 for the binary prediction
model was used to classify if the link is present or not and only those links were
explored for their corresponding multiclass model outputs.
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5. The multiclass model showed higher performance for correctly classifying
links as “human” hosts than other numerous avian and mammalian taxonomic
orders. Hence, the multiclass model outputs were summarized into either humans
or other taxonomic groups. For the novel virus, a list of known viruses with the
predicted link was generated. Using the hosts of these known viruses and the
taxonomic order in which the novel virus was detected, a list of most likely species
was generated based on the overall frequency of the host species. For
understanding the likelihood of infecting humans two factors were considered to be
of importance. Firstly, the number of links where humans are predicted as shared
hosts with known viruses (n) and the average model-predicted probability of those
links. A representation was generated incorporating the probability and available
model support in terms of number links to reflect the likelihood and compare
viruses relative to each other.

To test if virus family, the taxonomic order of hosts in which novel viruses were
detected, and the number of times the viruses were detected (equivalent to PubMed
hits for known viruses) influenced node (virus) level network centrality measures in the
predicted network (Gp) a linear regression model was fitted with centrality measures.

centrality measure ¼ β0intercept þ β1Viralfamilycategorical

þ β2HostOrdercategorical þ β3PubMed hits

For each of the random 10,000 node-level permutations, the output variable
(centrality measure) was randomly assigned to covariate values and the model was
re-fitted. A p-value was calculated by comparing the distributions of coefficients
with the original model coefficient. These models were fitted for degree centrality,
betweenness centrality, eigenvector centrality, and clustering coefficient of novel
viruses in the predicted network.

Prioritization score for novel viruses. Generalized Linear Mixed Models were
used to understand the association effects of virus family, taxonomic order of the
host and PubMed hits on the number of predicted human links and mean prob-
ability of the predicted links. The models were fit using glmmTMB and glm
packages in R. For relative comparison of zoonotic risk and for prioritizing novel
viruses for further characterization, a prioritization metric was developed based on
the predicted probability of sharing the humans as hosts with known viruses
(psharing humans) and the number of predicted shared human links (nhumans) in the
predicted network for the given virus (Gpredicted). Distributions for both
psharing humans and nhumans were normalized and multiplied to generate a single score
for a virus and for appropriate relative comparisons between novel viruses. To
understand the behavior of the prioritization score when predicting the zoonotic
risk of novel viruses, we also compared prioritization scores of known zoonotic and
non-zoonotic viruses using the Kolmogorov-Smirnov test.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Data reported in this paper are available at https://zenodo.org/record/5899054, https://
data.usaid.gov/d/tqea-hwmr and https://data.usaid.gov/d/x3ij-fnrb, https://data.usaid.
gov/Global-Health-Security-in-Development-GHSD-/PREDICT-Emerging-Pandemic-
Threats-Project/tqea-hwmr.

Code availability
Code used to develop models and generate results and figures presented in the paper is
available at https://zenodo.org/record/5899054.
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